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MSc. Vo Duc Thinh
Faculty of Mathematics and Information Technology Teacher Education, Dong
Thap University. Email: vdthinh@dthu.edu.vn

Abstract. In this paper, we study some properties of directionally proximal subdif-
ferential and then we provide a necessary condition for directionally optimal solutions
of the nonconstraint optimization problem.

1 Introduction

For f: R" — R is a function define at z € R” and R"” > u # 0, then f is said to
be differential in direction u at x if the following limit is finite

i £ & +tw) — f(Z)

T

The above limit is called that the derivative in direction u at & of f and denoted by
f1(@).

For each i = 1,...,n consider u; := (0,...,0,1,0,...,0) then the derivative of

i—1
f at 7 in direction u is called that the partial derivative of f with respect to the ¥
variable.

The partial derivative is an important tool in the optimal theory. However,
the class of the functions which exist the partial derivative is very exiguous. For
example, the function f(z,y) = /|z|+ |y| does not exist the partial derivative at
z = (0,0) but it is easy to show that £ = (0,0) is the minimizer of f.

In 1960, Rokafellar [5] presented the subdifferential for the convex functions
which is the generalization of the derivative. And then the subdifferential for the
convex function was studied and obtained the important results.

Recently, Clark, Fréchet and Mordukhovich generalized the subdifferential for
the convex functions become the Clark subdifferential, Fréchet subdifferential and
limiting subdifferential for the nonconvex functions and stated many important re-
sults of the optimal theory due to these tools.

In 2012, Ginchev and Mordukhovich [2] presented the directionally subdiffer-
ential for the nonconvex functions and used this tool to establish the necessary
condition for minimizer of the optimization problems. The directionally subdiffer-
ential is a (directionally) generalization of the partial derivative for the nonconvex
and nondifferential functions.

In this paper, we present the notations on the directionally proximal normal cone
and the directionally limiting normal cone. From these directionally normal cones,
we establish the directionally proximal subdifferential and the directionally limiting
subdifferential. Then we give some properties of these directionally subdifferentials

2 Preliminaries and auxiliary results

In this section, we always assume that X is a Hilbert space. For a sequence of
subsets (Ax) of X, we present the upper Painlewé-Kuratowski limits and the lower
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Puainlewé-Kuratowski limits as follows

Lim sup Ay, = {x € X | Ik, — +00, Iz, =215 x}
k—4o00
and
Lkim inf A = {x € X | dxy € Ay for large k, with xy koo, m} .
—+0o0

The Painlewé-Kuratowski limit of the sequence (Ay), when the upper and lower
limits coincide, is denoted by Limy ., Apg.

In what follows, we will define the concepts on directionally normal cone and
directionally subdifferential of a subset A of X. For # € A,Q C X \ {0} and
9 > 0, one denotes by Dg(7;0) := B(Z;0) N (T + Cp,) with Q5 := Q + B, Cq =
{M|qge@,A>0} and B is an unit ball. If @ = {u} then we replace C{,;(7;6) by
C(Z;9). Now we define the proximal and limiting normal cones with respect to Q
as follows

NG (@A) = {a" € X*| (¢, — &) < pllz — &>, Vo € AN Dg(z;6) and some p > 0}
(2.1)

and

No(%; A) == Lim sup Nj, (z; A). (2.2)

mi"—Q—>f
If ¢ A then we put Nj(Z; A) == No(z; A) :== 0. If Q = {u} then we call NJ'(z; A)
and N,(Z; A) respectively are the proximal and limiting normal cones in direction
u.
Let f: X — RU{+o0} we denote the followings

dom f:={zx € X | f(z) < +o0} and epif:= {(z,7)|r > f(z),z € X}.

Next, we define the proximal and limiting subdifferential of f at T with respect to )
as follows

05 f(7) = {z" € X" | (2", =1) € NG (7, f(Z)),epi )}, (2.3)

I f(z) :=A{x" € X" | (¢%, —1) € No((z, f(7)),epi f)} . (2.4)

If Q = {u} then we also denote by 07 f(z) (vesp. 0,f(Z)), the prozimal subdifferential
(resp. the limiting subdifferential) of f at T in direction u.

A point z € dom f is called to be an optimal minimizer of f in direction wu if
there exists § > 0 such that € D,(z;9) and f(z) < f(z) for all x € D,(;0).

3 Main results

We begin this section with the proposition on the convexity of directionally
proximal normal cone and then we give the sum rules for directionally proximal
subdifferential.

Proposition 3.1. Let A be a subset of a Hilbert space X, T € A and u € X \ {0}.
Then NP (z; A) is a convex normal cone.
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Proof. Let z*,y* € NP(z; A) and z* := Az* + (1 — \)y* for some A € [0;1] then
one has

(%, 2 —7) < ez —2||* and (y*, 2 — Z) < |z — Z||? for every x € AN (Z + C,,).
So one gets
(-2 =Mo" 0 —2) + (1 =My 2 —7) < (Neg + (1 = Ney) ||z — 7|2
for every x € AN (z + C,,). Setting € := max {€;; €2} then one obtains
(z*, 2 —T) < €|z — z||* for every x € AN (T + C,)
which implies that N (z; A) is convex. O

Proposition 3.2. Let f : X — R s a lower semicontinuous function and u C
X \ {0} then one has
(i) OF(cf)(z) = Ol f(z) for all z € X and ¢ > 0.
(i) Oulcf) (@) = cOuf(Z) for allz € X and ¢ > 0.

Proof. Let us first prove (i). Taking 2* € 8F(cf)(Z) then one finds € > 0,8 > 0
such that
(x*, 2 —7) — (cf(x) — cf(Z)) < €|z — 7||* for all z € D,(z,9) := B(z;0) N (z+C,).

It is equivalent to
1
<E$*,[L' - 1’> —(f(x) = f(x)) < EHx — z||* for all z € D,(z,6).

This implies that £ € 97 f(Z) and thus z* € cdf f(2).
Next we prove (ii). Taking z* € d,(cf)(Z) then one finds sequences ¢, > 0,r, —
0,0, = 0,2, = T and x, 7y 2* such that

(@ns @ = x0) = (cf () = cf () < €nllz — 2all?

for all # € Dy(2n, 70, 0n) := B(Tn;m0) N (2, + Cy; ). It means that

<I_Cn’x - $n> - (f(l’) - f(xn)) < %H.’L’ - :EnHQ for all z € Du(xn,rn,(Sn).

This implies that £ € 0,f(Z) thus 2* € ¢d,f(Z) which complete the proof of
theorem. U

Proposition 3.3. Let f : X — R be a lower semicontinuous function and T be a
local solution in direction u € X \ {0} of f then 0 € OF f(Z).

Proof. Let Z is a local solution in direction v € X \ {0} of f then thereis § > 0
such that
f(z) = f(z) <0 forall z € B(z,0) N (T + Cyy).

It implies that
(0,2 —z) — (f(x) — f(7)) <0 < ¢e||lx — | for every e > 0.

Thus 0 € 97 f(z). O

Finally, we complete this section with the fuzzy sum rule of the direction-
ally proximal subdifferential. To obtain this, we let S be a subset of X and
diam(S) := sup{||z — y||, =,y € S} . Let now us define the notation on the uniform
lower semicontinuous in direction v € X of functions which is the generalization of
the uniform lower semicontinuous in [3].
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Definition 3.4. Let X be a Hilbert space and f;,j € J be functions defined and
lower semicontinuous in a neighborhood of zand finite at £ with J is the index finite
set. We say that f;, j € J are uniform lower semicontinuous in direction u € X\ {0}
at z if there is ¢ > 0 such that for any sequences (z;,) € D,(Z,§) with j € J and
such that lim,_, . diam{z;,,j € J} — 0 then there are u, € D,(Z,0) such that
for all j € J,lim, o0 ||jn — un|| — 0 and

liminf »  (fj(zjn = f5(un))) 2 0.
jedJ

Proposition 3.5. Let X be a Hilbert space and f;,i € J be (extended-real-valued) the
uniform lower semicontinuous in direction u € X \{0} at z. Let 0 € 95 (3", f:)(Z)
then for any € > 0 there are u;,u},i € J such that

filw) = fi@) <6 Ju—al<e  ued fiw) ) ull<e
icJ

Proof. It is without loss of generality that one can assume f;(z) = 0 for all
i € J. (If opposite then we replace f;(z) by fi(z) — fi(¥) for all i € J.) Since
0 €l (X ,cs 1:)(&) by the definition, one finds p > 0,6 > 0 such that

Zf,(x) > —pllz — z||* with € D,(z,9). (3.5)
icJ

Since f;,i € J are uniform lower semicontinuous in direction u and f;(z) = 0 for
all ¢ € J, one finds a 6 > 0 which satisfying Definition and f;(x) > —1 for all

x € D,(z;0) and i € J. Putting § := min {5,5} and for each n € N, z; € D,(z;9)

with ¢ € J, one considers

falziyi€ J): Zfz T —{—pZHIZ—iEHQ—FTLZ||l’z—l’]”2

1€J 1€J 1,J€J
Putting o, := inf {f,,(z;,i € J) : x; € D,(z,0)}, one has
0= fu(Z,...,2Z) > o, > —|J| with |J| is the card of J.

For each i € J, taking z;, € D,(Z,0) to satisfy

1
fal@in,i € J) < a, + —.
n

Then one has

S

1T+ 3 i = gl < Sl €7) <

1,5€J

J .
so that ||z, — ] < \/ZMGJ [in — jnll? < 4/ % + -5 which converse 0 as n go
to +o0.
By the directionally uniform lower semicontinuity of f;,i € J there are u, €

D,(z,6) such that ||z;, — u,| — 0 and

D filw) =Y filuy) +o(1)

jeJ jeJ
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It follows that
0<>  filun) + [T pllun — 21> <D fiwm) +p )l — 2|* + o(1)

Jj€J JjEJ Jj€J
1
< fal@in, i € J) +0(1) < —+0(1), (3.6)
n
and 0 < [llzsn = 2] = o = | < llosn = all = 0. Hence e fi(un) + [ lpllun —

Z||*> = 0 as n = +00 and u,, — T as well as all x;,,. It implies from (3.6) that

0< th inf f;(z;,) < th sup fj(xjn) < 0. (3.7)

ey n—+00 n—+oo

One has lim,, o fi(z;,) > liminf, ,; f;(z) > f;(z) = 0. Combining to (3.7 one
has f;(xj,) — 0 for any j € J.
For any small € > 0, it implies from f;(z;,) — 0 that there exists ng € N such

that [ f;(zin)| < 5 for all n > ng and i € J. Put 0 := 55, one finds a large number
r € N such that z;, € cl D, (7;9) C D,(7;§) and

o < ' .
fr(xy,i€ J) < Dil(lzf,a) fr+9 (3.8)

With z = (2;,i € J) € X one puts Dy(2;0) := [[,c; Du(;9), Z:=(Z,...,7),2° :=
(:cl-r,i S J) = (Zio,i € J) < X‘Jl and

T(Z%) = {z = (z,i € J)ecDy(z,0) | fr(z Z zi — ziol]* < fr(2 )}

1€J

Then 2° € T'(2°) and T'(z°) is a nonempty closed set. Indeed, let us consider sequence
2" = (2in,1 € J) C T(2°) with lim,_, ;o 2" := 2 := (2;,7 € J) then z € cl D(%;0)
and one has

1
(z") + 5 ; |zin — ziol|* < f(2°) foralln =0,1,....

Since f,. and the norm function are lower semicontinuous, one has

Zsz — zio||* < lim inf (fr Zl\zm Zio| ) < fr(2%)

zEJ ZEJ

which implies that z € T'(z°).
For each y = (y;,i € J) € T(2°) one has

Z Hyl - Zi0H2 < fr(zo) - fr(y) < fr(ZO) — inf fr < 0.

icJ Dulz0)
Taking z' = (21,7 € J) € T(2°) such that

4t sl <, L)+ e ol 4

e ied

One again sets

T(z') = {Z €T(") | folz +ZZ QZHHZJ Zill* < filz Z i1 = 2ol }

=0 jeJ zEJ
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Then 2! € T'(z') and T'(z') is a nonempty closed set.
In general, one defines

T(z") = {ZGT( e AFAC +ZZ%1 — 2l

=0 jeJ

n—1
n 1
(") + 30D g llass — 2l

i=0 jeJ
with 2" = (zj,,j € J) € T(2"1) such that

+2221+1”ZJ’ Zol* < mf {fr +222z+1||2] ZJZHQ}

=0 jeJ =0 jeJ

Then T'(2") is also nonempty closed set.
For each y := (y;, € J) € T'(2") one has

2n+1 Z 1y — 2inl|® < [ ) + ZZ 21“ 1250 — 2jill ]

i€J 1=0 jeJ

— | fr(y) + ZZ 22+1 25 — Zﬂ”

mf {fT +ZZQZ+1 lz; — zﬂHQ}

=0 jeJ 1=0 jeJ
n—1 1 5
- [fr(y) +Y > %Ilw - ij'||2] S o
i=1 jeJ

and then one has

2
D (3.9)

which implies by Cauchy-Swchart inequality that > . ||lyi — zin|| < \/E Thus
n

diameter of T'(z") — 0 as n — +o0 and hence (z") is a Cauchy sequence. It implies
that there is 2 € T'(2") for n = 1,2,... such that 2" — 2 € ¢l D,(%;9). Finally for
any cl D,(2,8) > z # 2 one has z ¢ ()5 T(2") and so there is an m € N such that

)+ Z Z 22+1 125 = zll* > fr(2™) + Z Z 21+1 25m — 25l (3.10)

=0 jeJ i=0 jeJ

Otherwise for any ¢ > m one has

m—1 q—1
n 1 1
(z™) + Z Z ﬁ”zy‘m —zill* > fir(2%) + Z Z ﬁ”zjq — 2;il|?

i=0 jeJ =0 jeJ

(3) + ZZ 2@+1 — il (3.11)

=0 jeJ

For each j € J one puts z; = Z; + h; with h; = A\ju and puts A\, = 0 if v # j then
one has

q q
. . L.
FiG+hy) = F(g) + ) 21+1 8+ hy =zl =) gl — zil|* > 0.
i=m+1 =0
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Thus one has

Fi(Z5+ hi) = fi(Z5) + [|hy ||2+22 2+1 (hj; 2 = 2ji) 2 0. (3.12)

1
for all enough large n. Putting u}, := 23" | 2Z+1( — zj;) then we have

fi(z 4 hg) = fi(2) + 1h |1 + (. hy) > 0. (3.13)
Since sequence (u;‘n) is convergent so there is uj such that uj = lim, ., (O Then
for any 2; # « € 1 D, (Z,0) we have
fi(@) = f3(2) + llz = 2% + (uf, 2 = 2;) 2 0
which implies that u} € 9,f;(2;).
One now shows that >, [|uj[| < e. Indeed, one has

Dol =112 Z 2Z+1 = 21

jeJ JjE€J =0
and noting that z,,2 € cl D,(z,§) which implies that ||z;, — ;|| < 20 =
j€Jandn=0,1,.... Thus one has >, [luj| <e.

It remains to show that |f;(Z;)| < € for all j € J. Indeed, for each j € J and
with large enough m it implies from (3.10) and (3.11]) that

) + ZZ 2z+1 zﬂ||2 > fr(2) + ZZ H_l ZJZHQ

i=0 jeJ =0 jeJ

|§| for all

for any z € clD,(z;0) and ¢ > m. Choosing z = 2° in the above inequality and
combining ([3.9)) one obtains

inf f, 26 > () +0 > f,(2° +ZZ%1II jo = Zill> > fr(2).

cl Dy (z;0)

=0 jeJ
€ A A _ A A
7l > fiE) +p) a5 - Al (3.14)
ieJ ieJ ijed
for any large enough r € N. It implies from (3.8)) and ([3.14)) that
(|J]+ 1)e . (|J|+ 1)e
—e< —— < fi(z) < ———— .
ST SHEIE T =
U
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