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Abstract. In this paper, we study Painlevé-Kuratowski upper convergence of the

solution sets with a sequence of mappings converging continuously for the vector

quasi-equilibrium problems. Illustrating examples are provided.

1 Introduction

The vector equilibrium problems contain many problems as special cases, includ-

ing vector variational inequality problems, vector optimization problems, vector

complementarity problems, vector Nash equilibrium problems, etc. Because of

the general form of this problem, in fact it was investigated earlier under other

terminologies. Recently, there has been an increasing interest in the study to

stability of vector equilibrium problems.

As for the stabile result investigated on the convergence of the sequence of

mappings, there are some results for the vector optimization, vector variational

inequality problems and vector equilibrium problems with a sequence of sets con-

verging in the sense of Painlevé-Kuratowski (see e.g., [4–6, 9, 11]). In [6], Huang

discussed the convergence of the approximate efficient sets to the efficient sets

of vector-valued and set-valued optimization problems in the sense of Painlevé-

Kuratowski and Mosco. In [5], Fang et al. investigated the Painlevé-Kuratowski

set convergence of the solution sets of the perturbed set-valued weak vector vari-

ational inequalities. In [9], Lalitha and Chatterjee investigated the Painlevé-

Kuratowski set convergence of the solution sets of the a nonconvex vector opti-

mization problem. In [11], Peng and Yang investigated the Painlevé-Kuratowski

set convergence of the solution sets of the perturbed vector equilibrium problems

without monotonicity in real linear metric spaces.

In this paper, we establish Painlevé-Kuratowski upper convergence of the

solution sets of the vector quasi-equilibrium problems (in short,(QEP)n) with a

sequence of converging mappings in normed vector spaces.
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The structure of our paper is as follows. In Section 2, we introduce the prob-

lems (QEP) and (QEP)n, recall some definitions and important properties. In

Section 3, we investigate Painlevé-Kuratowski upper convergence of the solution

sets. Some examples are given for the illustration of our results.

2 Preliminaries

Throughout this paper, let X, Y be two normed vector spaces, A be a nonempty,

compact and convex subset of X. Let K : A→ 2A be a set-valued mapping and

ϕ : A×A→ Y be a vector function. C is a proper, closed and convex cone of Y ,

with intC 6= ∅.
We consider the vector quasiequilibrium problem.

(QEP) Finding x̄ ∈ K(x̄) such that

ϕ(x̄, y) ⊆ Y \ −intC, ∀y ∈ K(x̄).

For sequences of set-valued mappings Kn : A → 2A and sequences of func-

tions ϕn : A × A → Y , we consider the sequence of the vector quasiequilibrium

problems.

(QEP)n Finding x̄n ∈ Kn(x̄n) such that

ϕn(x̄n, y) ⊆ Y \ −intC, ∀y ∈ Kn(x̄n).

We denote the solution sets of problems (QEP) by S(ϕ,K) and (QEP)n by

S(ϕn, Kn). Throughout this paper, we always assume that S(ϕ,K), S(ϕn, Kn)

are not equal empty sets.

In the following, we introduce some concepts of the convergence of set se-

quences and mapping sequences (see [12]).

Let X be a normed space. A sequence of sets {Dn ⊆ X} is said to upper

converge (resp. lower converge) in the sense of Painlevé-Kuratowski to D if

lim sup
n→∞

Dn ⊆ D (resp. D ⊆ lim inf
n→∞

Dn). {Dn} is said to converge in the sense of

Painlevé-Kuratowski to D if lim sup
n→∞

Dn ⊆ D ⊆ lim inf
n→∞

Dn with

lim inf
n→∞

Dn := {x ∈ X : x = lim
n→∞

xn, xn ∈ Dn for sufficiently large n},

lim sup
n→∞

Dn := {x ∈ X : x = lim
k→∞

xnk
, xnk

∈ Dnk
{nk} a subsequence of {n}}.

Let Gn : X → 2Y be a sequence of set-valued mappings and G : X → 2Y be

a set-valued mapping. {Gn} is said to outer converge continuously (resp. inner

converge continuously) to G at x0 if lim sup
n→∞

Gn(xn) ⊆ G(x0) (resp. G(x0) ⊆
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lim infn→∞Gn(xn)) ∀xn → x0. {Gn} is said to converge continuously to G at x0

if lim sup
n→∞

Gn(xn) ⊆ G(x0) ⊆ lim inf
n→∞

Gn(xn) ∀xn → x0. If {Gn} converges con-

tinuously to G at every x0 ∈ X, then it is said that {Gn} converges continuously

to G on X.

The next, we introduce some concepts of the convergence of functional se-

quence (see [8]).

A sequence of functions {gn} where gn : X → Y is said to converge continu-

ously to a function g : X → Y at x0 if lim
n→∞

gn(xn) = g(x0) ∀xn → x0. If {gn}
converges continuously to g at every x0 ∈ X, then it is said that {gn} converges

continuously to g on X.

3 Main Results

In this section, our focus is on the Painlevé-Kuratowski upper convergence of the

solution sets for (QEP)n.

Theorem 3.1 Suppose that

(i) Kn(.) converges continuously to K(.) and has compact values in A;

(ii) ϕn(., .) converges continuously to ϕ(., .).

Then, lim sup
n→∞

S(ϕn, Kn) ⊆ S(ϕ,K).

Proof. On a contrary, we suppose that lim supn→∞ S(ϕn, Kn) * S(ϕ,K), i.e,

there exists x0 ∈ lim sup
n→∞

S(ϕn, Kn), but x0 6∈ S(ϕ,K). Since x0 ∈ lim sup
n→∞

S(ϕn, Kn),

there exists a sequence {xm} ⊆ S(ϕm, Km), xm → x0, ∀m. Then, for each

y ∈ Km(xm), we have

ϕm(xm, y) ⊆ Y \ −intC. (3.1)

By Kn(.) outer converges continuously to K(.) and has compact values in

A, with xm ∈ Km(xm) we have x0 ∈ K(x0). As x0 6∈ S(ϕ,K), there exists

y0 ∈ K(x0), such that

ϕ(x0, y0) ∈ −intC. (3.2)

By Kn(.) inner converges continuously to K(.) and y0 ∈ K(x0), it is clear that,

there exists {ym} ⊆ Km(xm) and ym → y0. From (3.1), we have

ϕm(xm, ym) ⊆ Y \ −intC. (3.3)
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As ϕn(., .) converges continuously to ϕ(., .) and by (3.3) with (xm, ym)→ (x0, y0)

and Y \ −intC be closed, then

ϕ(x0, y0) ⊆ Y \ −intC. (3.4)

We see a contradiction between (3.4) and (3.2) and so completed the proof. �

The following example shows that the condition (i) is essential.

Example 3.1 Let X = Y = R, C = R+, A = [−1, 1], consider the mappings

K : A → 2A, Kn : A → 2A such that K(x) = [1
2
, 1] and Kn(x) = [− 1

n
, 1
n
]. We

define the mappings ϕ : A× A→ Y and ϕn : A× A→ Y such that

ϕ(x, y) = y − x and ϕn(x, y) = (1 +
1

n
)(y − x).

It follows from a direct computation S(ϕ,K) = {1
2
} and S(ϕn, Kn) = {− 1

n
}.

We show that assumption (ii) of Theorem 3.1 is satisfied. But, Kn(.) does not

converge continuously to K(.). Thus, the conclusion of Theorem 3.1 does not

hold. In fact, {0} = lim sup
n→∞

S(ϕn, Kn) * S(ϕ,K) = {1
2
}.

The following example shows that the condition (ii) is essential.

Example 3.2 Let X = R, Y = R2, C = R2
+, A = [0, 1], consider the mappings

K : A → 2A, Kn : A → 2A such that K(x) = Kn(x) = [0, 1]. We define the

mappings ϕ : A× A→ Y and ϕn : A× A→ Y such that

ϕ(x, y) = (−1− x,
1

2
− x) and ϕn(x, y) = (−1− x,− 1

n
+

x

n
).

It follows from a direct computation S(ϕ,K) = [0, 1
2
] and S(ϕn, Kn) = {1}.

We show that assumption (i) of Theorem 3.1 is satisfied. But, ϕn(., .) does not

converge continuously to ϕ(., .). Thus, the conclusion of Theorem 3.1 does not

hold. In fact, {1} = lim sup
n→∞

S(ϕn, Kn) * S(ϕ,K) = [0, 1
2
].

The next example shows that all assumptions of Theorem 3.1 are fulfilled.

Example 3.3 Let X = Y = R, C = R+, A = [−4, 4], consider the mappings

K : A→ 2A, Kn : A→ 2A such that K(x) = [−1, 3] and Kn(x) = [−1− 1
n
, 3 + 1

n
].

We define the mappings ϕ : A× A→ Y and ϕn : A× A→ Y such that

ϕ(x, y) = 3− 2x− x2 and ϕn(x, y) = 3− 2(x +
1

n
)− (x +

1

n
)2.

It follows from a direct computation S(ϕ,K) = [−1, 1] and S(ϕn, Kn) = [−1 −
1
n
, 1 − 1

n
]. We show that assumptions (i) and (ii) of Theorem 3.1 are satisfied.

Then, the result of Theorem 3.1 hold. In fact, lim sup
n→∞

S(ϕn, Kn) = [−1, 1] =

S(ϕ,K).
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Remark 3.1

Let X and Y be two normed linear spaces and C = E, E is improvement set

(see Definition 2.1 in [9]), K(x) = S,Kn(x) = Sn,∀x ∈ A. Let ϕ(x, y) = f(y) −
f(x), ϕn(x, y) = fn(y) − fn(x) (with f, fn be functions from X into Y ) for any

x, y ∈ X. Then, the (QEP)n reduce to a sequence of vector optimization problem

(in short, (P)n) and the (QEP) reduced to the vector optimization problem (in

short, (P)), this problem is studied in [9]. Then, Theorem 3.3 and Theorem 4.6

(in [9]) are special cases of Theorem 3.1. Moreover, the proof of Theorem 3.1 is

different from Theorem 3.3 and Theorem 4.6 in [9].
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solution sets of set-valued weak vector variational inequalities, J. Inequal.

Appl. ID 43519 (2008), 1-14.

6. Huang, X.X.: Stability in vector-valued and set-valued optimization, Math.

Methods Oper. Res. 52 (2000), 185-195.

7. Hung, N.V: Stability of a solution set for parametric generalized vector

mixed quasivariational inequality problem, J. Inequa. Appl. 276 (2013),

1-13.

8. Lalitha, C.S., Chatterjee, P.: Stability for properly quasiconvex vector opti-

mization problem, J. Optim. Theory Appl. 155 (2012), 492-506.

9. Lalitha, C.S., Chatterjee, P.: Stability and scalarization in vector optimiza-

tion using improvement sets, J. Optim. Theory Appl. (2014), online first.

198



SCIENCE RESEARCH CONFERENCE OF FMITTE MAY 2015

10. Lignola, M. B., Morgan, J.: Generalized variational inequalities with pseu-

domonotone operators under perturbations, J. Optim. Theory Appl. 101

(1999), 213-220.
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